ESTUDIO DE LA COMPOSICIÓN FÍSICO-QUÍMICA DE VINOS BLANCOS DE DIFERENTES DENOMINACIONES DE ORIGEN PROTEGIDAS DE CASTILLA Y LEÓN

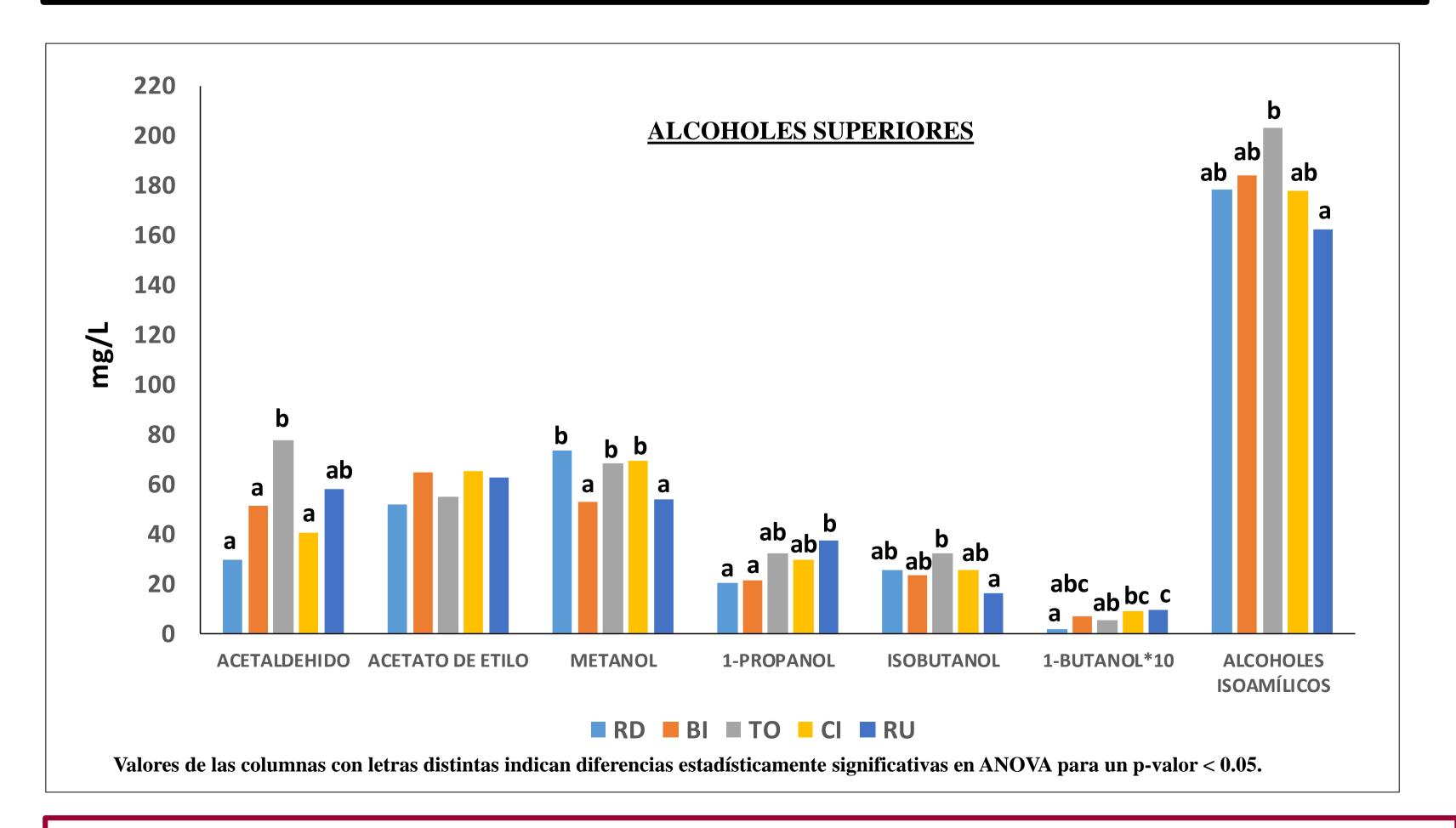
Rubén del Barrio-Galán, Marta Bueno-Herrera, Pedro López de la Cuesta, Silvia Pérez-Magariño*
Instituto Tecnológico Agrario de Castilla y León, Consejería de Agricultura y Ganadería.

Ctra Burgos Km 119, 47071 Valladolid.

*Tfno: 983415245; e-mail: permagsi@itacyl.es

INTRODUCCIÓN Y OBJETIVO

- La calidad del vino depende, en gran medida, de la composición físico-química. Ésta puede ser diferente en función de diversos factores como la variedad de uva utilizada, el suelo, la ubicación geográfica y el clima.
- El <u>objetivo</u> fue evaluar la composición físico-química de vinos blancos de 5 Denominaciones de Origen Protegidas (DOP) de Castilla y León (Ribera del Duero (RD), Bierzo (BI), Toro (TO), Cigales (CI) y Rueda (RU)).


MATERIAL Y MÉTODOS

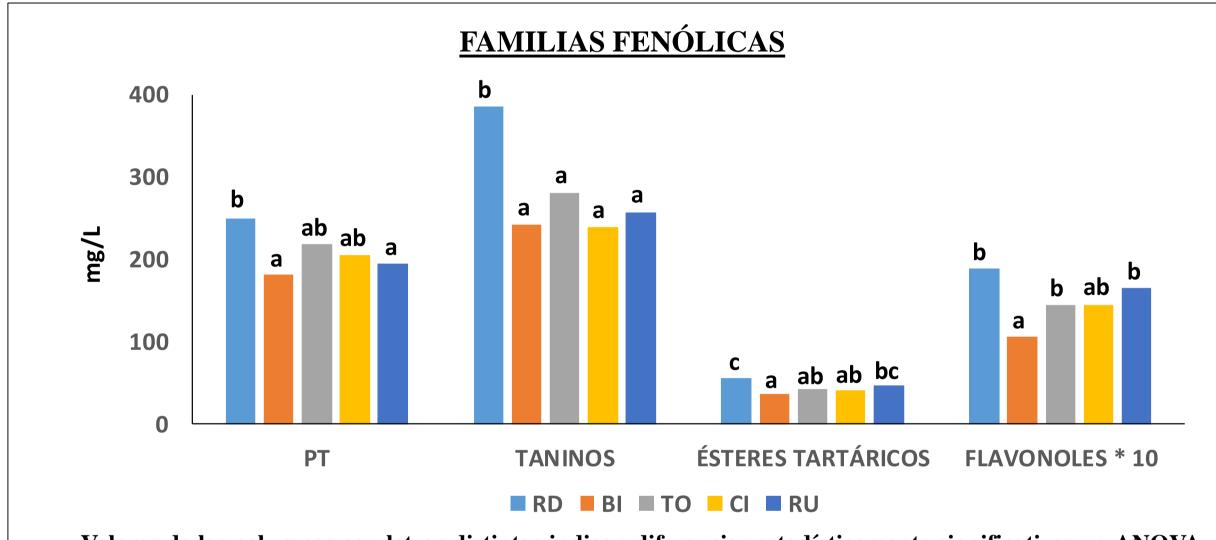
- Se analizaron 49 vinos blancos.
- Familias fenólicas e intensidad colorante.
- Fenoles de bajo peso molecular.
- Polisacáridos solubles.
- Grado alcohólico, contenido en glicerol y ácidos orgánicos.
- Alcoholes superiores

RESULTADOS

- Los vinos de RD presentaron mayor concentración de las diferentes familias fenólicas, así como de alcoholes fenólicos y derivados de AHC que los vinos de las otras 4 DOPs.

 Solamente los vinos de RD y BI contenían estilbenos.
 - Un mayor contenido de estos compuestos en los vinos puede aportar mayor estructura gustativa pero también mayor amargor.
- Los vinos de RD, CI y RU tenían mayor intensidad colorante que los vinos de BI y TO, pudiendo indicar diferencias en la fase visual de los vinos.
- Los vinos de TO fueron los de mayor contenido en polisacáridos y los de BI los de menor, principalmente debido a las diferencias encontradas en las fracciones PS F-1 (162 kDa) y PS F-3 (11 kDa).
 - Un mayor contenido de estos compuestos puede contribuir a mejorar las propiedades gustativas de los vinos.
- El grado alcohólico de los vinos de RU y CI fue mayor que en el resto de vinos estudiados en las otros DOPs.
- Los vinos de RD y BI fueron los de mayor concentración en glicerol y los vinos de RU los de menor.
 - Estos compuestos pueden aportar una sensación de dulzor y volumen en boca de los vinos.
- Los vinos de RD, CI y RU presentaron el mayor contenido en ácidos orgánicos y los de BI el menor.
 - Un mayor contenido de ciertos ácidos orgánicos en los vinos puede aportar mayor frescura en la fase gustativa y contribuir al equilibrio físico-químico de los vinos.
- Los alcoholes isoamílicos fueron los alcoholes superiores con mayor concentración, siendo los vinos de TO los que tenían los valores más altos y los de RU los más bajos.
 - Un mayor contenido de estos compuestos puede contribuir a mejorar la complejidad aromática de los vinos.

Agradecimientos


Este estudio ha sido financiado a través del proyecto 2017/721 del Programa de Desarrollo Rural (PDR) de Castilla y León 2014-2020 (financiado con fondos FEADER)

<u>Tabla 1</u>. Intensidad colorante, grado alcohólico (%), contenido en glicerol (g/L), en ácidos orgánicos (g/L) y de polisacáridos (mg/L).

	RD	BI	ТО	CI	RU
Intensidad de color	0.102 b	0.074 a	0.079 a	0.105 b	0.096 b
Grado alcohólico	12.4 a	12.1 a	11.9 a	13.1 b	13.8 c
Glicerol	5.93 b	5.76 b	5.51 ab	5.56 ab	5.25 a
Ácidos orgánicos	4.85 b	4.28 a	4.52 ab	4.77 b	4.77 b
PS F-1	110.9 ab	90.8 a	122.7 b	87.3 a	91.9 a
PS F-2	77.1	89.7	81.3	105.4	94.3
PS F-3	38.1 abc	25.2 a	38.4 bc	29.8 ab	43.9 c
PS F-4	21.3 b	11.9 ab	20.3 b	20.5 b	7.2 a
POLISACÁRIDOS TOTALES	247.5	217.6	262.7	243.0	237.2

PS F-1: Fracción de polisacáridos con un peso molecular medio de 162 kDa; PS F-2: Fracción de polisacáridos con peso molecular medio de 31 Kda; PS F-3: Fracción de polisacáridos con un peso molecular medio de 11 kDa; PS F-4: Fracción de polisacáridos con un peso molecular medio de 7 kDa. Valores en la misma fila con letras distintas indican diferencias estadísticamente significativas en ANOVA para un p-valor < 0.05).

Valores de las columnas con letras distintas indican diferencias estadísticamente significativas en ANOVA para un p-valor < 0.05.

FENOLES DE BAJO PESO MOLECULAR

25
20
15
10
AHB AHC AHC DERIVADOS ALCOHOLES

7
6
5
4
3
2
1
0
FLAVANOLES FLAVONOLES ESTILBENOS*10

AHB: ácidos hidroxibenzoicos; AHC: ácidos hidroxicinámicos.

CONCLUSIONES

Valores de las columnas con letras distintas indican diferencias estadísticamente significativas en

ANOVA para un p-valor < 0.05.

Se encontraron diferencias en la composición físicoquímica de los vinos de las diferentes DOPs analizados. Estas diferencias pueden influir en el equilibrio físicoquímico y la calidad sensorial final de los vinos.